en
Broderick Hall,Meenakshi Rajendran,Shuen Mei,Siamak Amirghodsi

Apache Spark 2.x Machine Learning Cookbook: Over 100 recipes to simplify machine learning model implementations with Spark

Avise-me quando o livro for adicionado
Para ler este livro carregue o arquivo EPUB ou FB2 no Bookmate. Como carrego um livro?
Simplify machine learning model implementations with Spark
About This BookSolve the day-to-day problems of data science with SparkThis unique cookbook consists of exciting and intuitive numerical recipesOptimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your dataWho This Book Is ForThis book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem.
What You Will LearnGet to know how Scala and Spark go hand-in-hand for developers when developing ML systems with SparkBuild a recommendation engine that scales with SparkFind out how to build unsupervised clustering systems to classify data in SparkBuild machine learning systems with the Decision Tree and Ensemble models in SparkDeal with the curse of high-dimensionality in big data using SparkImplement Text analytics for Search Engines in SparkStreaming Machine Learning System implementation using SparkIn DetailMachine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks.
This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems.
Style and approachThis book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.
Este livro está indisponível
773 páginas impressas
Publicação original
2017
Ano da publicação
2017
Já leu? O que achou?
👍👎
fb2epub
Arraste e solte seus arquivos (não mais do que 5 por vez)