en
Livros
Eric Mayor

Learning Predictive Analytics with R

Get to grips with key data visualization and predictive analytic skills using R
About This BookAcquire predictive analytic skills using various tools of RMake predictions about future events by discovering valuable information from data using RComprehensible guidelines that focus on predictive model design with real-world dataWho This Book Is ForIf you are a statistician, chief information officer, data scientist, ML engineer, ML practitioner, quantitative analyst, and student of machine learning, this is the book for you. You should have basic knowledge of the use of R. Readers without previous experience of programming in R will also be able to use the tools in the book.
What You Will LearnCustomize R by installing and loading new packagesExplore the structure of data using clustering algorithmsTurn unstructured text into ordered data, and acquire knowledge from the dataClassify your observations using Naive Bayes, k-NN, and decision treesReduce the dimensionality of your data using principal component analysisDiscover association rules using AprioriUnderstand how statistical distributions can help retrieve information from data using correlations, linear regression, and multilevel regressionUse PMML to deploy the models generated in RIn DetailR is statistical software that is used for data analysis. There are two main types of learning from data: unsupervised learning, where the structure of data is extracted automatically; and supervised learning, where a labeled part of the data is used to learn the relationship or scores in a target attribute. As important information is often hidden in a lot of data, R helps to extract that information with its many standard and cutting-edge statistical functions.
This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data.
You will learn how to perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. All chapters will guide you in acquiring the skills in a practical way. Most chapters also include a theoretical introduction that will sharpen your understanding of the subject matter and invite you to go further.
The book familiarizes you with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, association rules, principal component analysis, multilevel modeling, k-NN, Naive Bayes, decision trees, and text mining. It also provides a description of visualization techniques using the basic visualization tools of R as well as lattice for visualizing patterns in data organized in groups. This book is invaluable for anyone fascinated by the data mining opportunities offered by GNU R and its packages.
Style and approachThis is a practical book, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this book, but that can also be applied to any other data.
437 páginas impressas
Ano da publicação
2015
Já leu? O que achou?
👍👎
fb2epub
Arraste e solte seus arquivos (não mais do que 5 por vez)